Big 0 Notation Cheat Sheet



  1. Big O Notation Cheat Sheet Pdf
  2. Big O Notation Chart
Sorting Algorithms
Sorting Algorithms Space complexityTime complexity
Worst caseBest caseAverage caseWorst case
Insertion SortO(1)O(n)O(n2) O(n2)
Selection SortO(1)O(n2) O(n2) O(n2)
Smooth SortO(1)O(n)O(n log n)O(n log n)
Bubble SortO(1)O(n)O(n2) O(n2)
Shell SortO(1)O(n)O(n log n2) O(n log n2)
MergesortO(n)O(n log n)O(n log n)O(n log n)
QuicksortO(log n)O(n log n)O(n log n)O(n log n)
HeapsortO(1)O(n log n)O(n log n)O(n log n)

Big O notation is useful when analyzing algorithms for efficiency. For example, the time (or the number of steps) it takes to complete a problem of size n might be found to be T(n) = 4n 2 − 2n + 2.As n grows large, the n 2 term will come to dominate, so that all other terms can be neglected—for instance when n = 500, the term 4n 2 is 1000 times as large as the 2n term. Big o cheatsheet with complexities chart Big o complete Graph!Bigo graph1 Legend!legend3!Big o cheatsheet2!DS chart4!Searching chart5 Sorting Algorithms chart!sorting chart6!Heaps chart7!graphs chart8. HackerEarth is a global.

Data Structures Comparison
Data Structures Average CaseWorst Case
SearchInsertDeleteSearchInsertDelete
ArrayO(n)N/AN/AO(n)N/AN/A
Sorted ArrayO(log n)O(n)O(n)O(log n)O(n)O(n)
Linked ListO(n)O(1)O(1)O(n)O(1)O(1)
Doubly Linked ListO(n)O(1)O(1)O(n)O(1)O(1)
StackO(n)O(1)O(1)O(n)O(1)O(1)
Hash tableO(1)O(1)O(1)O(n)O(n)O(n)
Binary Search TreeO(log n)O(log n)O(log n)O(n)O(n)O(n)
B-TreeO(log n)O(log n)O(log n)O(log n)O(log n)O(log n)
Red-Black treeO(log n)O(log n)O(log n)O(log n)O(log n)O(log n)
AVL TreeO(log n)O(log n)O(log n)O(log n)O(log n)O(log n)

Big-O Notation Cheat Sheet This cheat sheet shows the Big-O time and space complexities (runtime analysis) of common algorithms used in the computer science field. You can see which collection type or sorting algorithm to use at a glance to write the most efficient code. Big-O Cheat Sheet; Big-O Cheat Sheet. Sorting algorithms are a fundamental part of computer science. Being able to sort through a large data set quickly and efficiently is a problem you will be likely to encounter on nearly a daily basis. Here are the main sorting algorithms.

Big 0 Notation Cheat Sheet
Growth Rates
n f(n)log nnn log nn22nn!
100.003ns0.01ns0.033ns0.1ns1ns3.65ms
200.004ns0.02ns0.086ns0.4ns1ms77years
300.005ns0.03ns0.147ns0.9ns1sec8.4x1015yrs
400.005ns0.04ns0.213ns1.6ns18.3min--
500.006ns0.05ns0.282ns2.5ns13days--
1000.070.1ns0.644ns0.10ns4x1013yrs --
1,0000.010ns1.00ns9.966ns1ms----
10,0000.013ns10ns130ns100ms----
100,0000.017ns0.10ms1.67ms10sec----
1'000,0000.020ns1ms19.93ms16.7min----
10'000,0000.023ns0.01sec0.23ms1.16days----
100'000,0000.027ns0.10sec2.66sec115.7days----
1,000'000,0000.030ns1sec29.90sec31.7 years----
Notation

Common Data Structure Operations

Data StructureTime ComplexitySpace Complexity
AverageWorstWorst
AccessSearchInsertionDeletionAccessSearchInsertionDeletion
ArrayΘ(1)Θ(n)Θ(n)Θ(n)O(1)O(n)O(n)O(n)O(n)
StackΘ(n)Θ(n)Θ(1)Θ(1)O(n)O(n)O(1)O(1)O(n)
QueueΘ(n)Θ(n)Θ(1)Θ(1)O(n)O(n)O(1)O(1)O(n)
Singly-Linked ListΘ(n)Θ(n)Θ(1)Θ(1)O(n)O(n)O(1)O(1)O(n)
Doubly-Linked ListΘ(n)Θ(n)Θ(1)Θ(1)O(n)O(n)O(1)O(1)O(n)
Skip ListΘ(log(n))Θ(log(n))Θ(log(n))Θ(log(n))O(n)O(n)O(n)O(n)O(n log(n))
Hash TableN/AΘ(1)Θ(1)Θ(1)N/AO(n)O(n)O(n)O(n)
Binary Search TreeΘ(log(n))Θ(log(n))Θ(log(n))Θ(log(n))O(n)O(n)O(n)O(n)O(n)
Cartesian TreeN/AΘ(log(n))Θ(log(n))Θ(log(n))N/AO(n)O(n)O(n)O(n)
B-TreeΘ(log(n))Θ(log(n))Θ(log(n))Θ(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(n)
Red-Black TreeΘ(log(n))Θ(log(n))Θ(log(n))Θ(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(n)
Splay TreeN/AΘ(log(n))Θ(log(n))Θ(log(n))N/AO(log(n))O(log(n))O(log(n))O(n)
AVL TreeΘ(log(n))Θ(log(n))Θ(log(n))Θ(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(n)
KD TreeΘ(log(n))Θ(log(n))Θ(log(n))Θ(log(n))O(n)O(n)O(n)O(n)O(n)
Big 0 notation cheat sheet excelBig 0 Notation Cheat Sheet

Big O Notation Cheat Sheet Pdf

Array Sorting Algorithms

Big O Notation Chart

AlgorithmTime ComplexitySpace Complexity
BestAverageWorstWorst
QuicksortΩ(n log(n))Θ(n log(n))O(n^2)O(log(n))
MergesortΩ(n log(n))Θ(n log(n))O(n log(n))O(n)
TimsortΩ(n)Θ(n log(n))O(n log(n))O(n)
HeapsortΩ(n log(n))Θ(n log(n))O(n log(n))O(1)
Bubble SortΩ(n)Θ(n^2)O(n^2)O(1)
Insertion SortΩ(n)Θ(n^2)O(n^2)O(1)
Selection SortΩ(n^2)Θ(n^2)O(n^2)O(1)
Tree SortΩ(n log(n))Θ(n log(n))O(n^2)O(n)
Shell SortΩ(n log(n))Θ(n(log(n))^2)O(n(log(n))^2)O(1)
Bucket SortΩ(n+k)Θ(n+k)O(n^2)O(n)
Radix SortΩ(nk)Θ(nk)O(nk)O(n+k)
Counting SortΩ(n+k)Θ(n+k)O(n+k)O(k)
CubesortΩ(n)Θ(n log(n))O(n log(n))O(n)